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A simple laboratory model for the wind-driven ocean circulation is re-studied 
experimentally and theoretically. Introduced by Pedlosky & Greenspan ( 1967), 
the model consists of a rotating cylinder with sloping bottom, the fluid inside 
being driven by the steady relative rotation of the cylinder’s lid. A linear theory 
is developed to illustrate the modificationin the interior and Stewartson boundary 
layers caused by variation of the bottom slope from 0 to O( 1); Stommel’s (1948) 
model is obtained when the bottom slope tana  < E2, and the Munk & Carrier 
(1950) model is obtained for E* < tan a < 1 ( E  is the Ekman number). Measure- 
ments of the interior cross-contour ‘Sverdrup’ velocity agree well with theory 
when the Ekman-layer Reynoldsnumber RE is E 1 or less. The western boundary- 
layer azimuthalvelocity agreesreasonably well with theory, although the observed 
variation with depth and bottom slope were not predicted. The western boundary 
layer shows downstream intensification when RE is increased from M 1 until 
topographic Rossby waves appear in the transition region between western 
boundary layer and interior. The motion becomes unstable when a critical value 
of RE is reached, independent of the bottom slope, and a low-frequency two- 
dimensional flow oscillation is observed. A brief comparison is made with 
previous wind-driven ocean circulation studies. 

1. Introduction 
We consider here the slow, viscously driven motion of an incompressible 

homogeneous fluid in a rapidly rotating cylinder with sloping bottom. The 
configuration (shown in figure 1) is called a ‘sliced cylinder’, since the lower sur- 
face is formed by a plane intersecting the cylinder at an angle a. The upper surface 
is normal to the cylinder axis and rotates steadily with an angular velocity 
(1 + E) Q, while the rest of the container rotates at Q. 

Pedlosky & Greenspan (1967) introduced this model to demonstrate the modi- 
fications of Greenspan’s (1965) general theory for flow in a rotating fluid con- 
tainer with open geostrophic contours. They also noted the similarity of the model 
flow to the large-scale ocean circulation. The physical analogy between vortex 
stretching by motion across bottom contours, and the creation of relative vor- 
ticity by the northward increase in horizontal Coriolis acceleration (the ,&effect), 
enables the sliced cylinder to model several important features of the theoretical 
wind-driven ocean circulation problem. 

To exploit this analogy, however, and draw oceanographic inferences, we 
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bottom slope constrains the flow to a slow drift across the depth contours, and 
the horizontal circulation is closed by a strong viscous boundary current along 
the western side wall. A series of preliminary experiments by the author quali- 
tatively confirmed these results, but also showed several features which could 
not be explained (see Pedlosky & Greenspan). 

Presented in this paper is a re-examination of the sliced cylinder model. 
The linear analysis of Pedlosky & Greenspan is extended in $ 2  to cover a wider 
range of bottom slopes, in order to clarify the physical mechanisms underlying 
several types of western boundary layers. This will also show under what con- 
ditions the laboratory model is analogous to the theoretical models of Stommel 
(1948) and Munk & Carrier (1950). The apparatus and methodology used to test 
the linear theory, and to explore the non-linear flow rdgime, are described in 
$3. Finally, the results are discussed in $4, and they are compared in $5  with 
previous ocean circulation studies. 

Z 

n 

2. Linear theory 
Consider slow steady flow in the sliced cylinder configuration. The governing 

equations are the non-dimensional linearized momentum and continuity equa- 
tions for an incompressible homogeneous fluid of viscosity v, written in a co- 
ordinate system rotating with the cylinder at an angular velocity s1 and scaled 
by the container’s mean depth L and the lid’s relative angular velocity es1, 

2 E ~ q  = -Vp+EVZq, (1 4 
v.q = 0. (1b)  
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must first thoroughly understand the laboratory model itself. Pedlosky & 
Greenspan show that the symmetric character of the flow obtained for zero 
bottom slope changes completely when the depth variation exceeds the scaled 
Ekman-layer thickness. The interior dynamics remain geostrophic, but the finite 
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The Ekman number E = v/QL2 is assumed to be very small; and the boundary 
conditions on q are q = r& a t  z = 1, q = 0 at r = a, and z = y tan a. See figure 1 
for x, y ,  z ,  where x = r cos 8, y = r sin 8. 

Since our interest here is the a-dependent interior and vertical boundary- 
layer flow, we treat implicitly the Ekman layers developed on the top and bottom 
surfaces. The Ekman-layer suction is then expressed as a compatibility con- 
dition, on the interior and side-wall boundary-layer velocity components, just 
outside the Ekman layers: 

w = iEi(2-g.V x q), at z = 1, 

w = tana(3^.q)+QE3(~.Vxq+O(tana)), at z = ytana. } (3 )  

The term tan a( j  . q) represents the imposed vertical velocity of a fluid particle 
moving up the bottom slope. When terms of O(E4 tana) and higher are ignored 
for small a, the vertical velocity above the bottom Ekman layer consists of this 
orographic component plus the approximate Ekman-layer flux appropriate to 
a horizontal bottom. We shall see that, as a is increased from 0 to O ( l ) ,  the 
constraint imposed by the relative magnitude of the orographic component 
to the Ekman-layer suction governs the pattern of the complete flow. 

Case 1: 0 < t ana  < E*. The interior dynamics are geostrophic and are con- 
strained by the Taylor-Proudman theorem for all a. The interior velocity com- 
ponents are independent of z to O(E), and the fluid motion is columnar. If one 
matches vertical velocities in ( 2 ) ,  one forms a steady vorticity equation, 

tana  
Ez 

L v x q + T 3 . q  = 1)  

which can be rewritten 
tan a 

v2p+- px = 2 ,  
E* 

(3) 

(4) 

using the pressure field as a stream function. Since the O( 1) interior radical flow 
must be zero at the boundary, the cylinder wall is a streamline andp(a) constant. 
A particular solution of (4) is 

( 5 )  

the flux into the top Ekman layer being balanced by the orographic component 
of a fluid column moving up the bottom slope. This is analogous to the Sverdrup 
(1947) balance in p plane dynamics. The homogeneous problem is reduced, by 

2Ei 
izzx 5, 

x tan a the substitution 

to a Helmholtz equation with modified Bessel function solutions. The general 
solution of the total problem is 

where 

17 

a tan a 
2E4 

r=- 
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and x r  and r r  are normalized by the scale radius a. The unknown Fourier co- 
efficients are found by series evaluation of the boundary condition p ( ~ )  = 0, 
yielding for the pressure, 

Shallow Shallow 

0 @ 0 
Normalized z-axis 
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FIGURE 3 

The series converges for finite tana,  and has been evaluated numerically. Two 
stream patterns are shown in figure 2, and the pressure along the z-axis shown 
in figure 3. The parameter I‘, proportional to the ratio of total depth change 
r,, tan a to Ekman-layer thickness 2/( v/s2), expresses the importance of orographic 
uplift relative to Ekman-layer suction, and dictates the east-west asymmetry 
of the interior circulation. 

The intense crowding of streamlines along the western boundary, for large 
values of I?, indicates the development of a geostrophic western boundary layer, 
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in which vortex shrinking is balanced by Ekman-layer suction. The scale thick- 
ness of this layer is I’-l or E*/tana, while the boundary current azimuthal 
velocity is O( 1). The boundary flux matches the interior north-south flux, con- 
strained by the bottom slope to be O(Ei/tana). These results are similar to 
Stommel (1948), since (4) is identicaE to the governing equation for the stream 
function examined by Stommel for two-dimensional p plane flow with ‘bottom’ 
friction. 

As tan a increases from Ei toward Ef, this geostrophic layer forms and 
decreases in thickness toward the Stewartson Ef-layer scale, while the interior 
flow decreases toward O(Ea), the magnitude of the forced radial motion from the 
lowest-order geostrophic balance which a Stewartson E* layer can support. 
We shall see next that the Ea-layer structure is modified when tana  ap- 
proaches Ef . 

Case 2 :  E )  N tan a < 1. We now examine the ES layer along the western bound- 
ary by letting tan a = AEf, with A at first assumed to be O(1). The Ei-layer 
velocity and pressure fields are expanded in powers of Ea, 

q = qo+Efq,+ ..., p =po+E*pl+ ..., (9) 

with the stretched co-ordinate c, given by 

6 = (a  - r)E-i. 

The lowest-order Ekman-layer fluxes are given by ( 2 )  as 

w1 = vog/2 a t  x = 1, (10a)  
w1 = ( - vOg/2) + A  cos Bv, ( l o b )  at z = a sin B tan a. 

As tan a approaches Ef, the bottom slope is large enough to make the orographic 
component comparable to the Ekman-layer suction in the Ef layer. In the ver- 
tically integrated continuity equation, the horizontal convergence is associated 
only with the ageostrophic part +vocc of u2 (as given by the O(E*) azimuthal 
momentum equation), since the loweriorder radial flow u1 is entirely geostrophic. 
Thus, using (lo), 

(11) vuogg5 - 2Vog + 2~ cos ev, = 0. 

The lateral diffusion of vorticity from the side boundary is now balanced not 
only by Ekman-layer suction but also by orographic vortex stretching. For 
solutions of the form Ai ehig, the Ai’s must satisfy the cubic 

~ : - 2 4 + 2 ~ C o ~ e  = 0. (12) 

For A < ($)#, i.e. t ana  < (g)#Ef, for cos8 < 0, the two roots of (12), which 
give exponential decay into the interior along the western boundary, are real; 
this corresponds to a slight thickening of the normal &independent Ef layer 
near 19 = n and the thicker interior geostrophic boundary layer found in case 1. 
When the bottom slope reaches the critical value tan ac = (+)# Ef, the interior 
and Ef layers merge at 6 = 7r. For larger slopes, the two relevant roots of (12) 
become complex conjugates of the form 

A* = - a + b efeni, (13) 
17-2 
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with u = {AlcosOl- . J ( A ~ C O S ~ O - ( ~ ) ~ ) } ~ ,  

b = (Alcos8l + 4(A2~os2~-($)3)}~,  

along an arc centred about 8 = n. The transition points between real and complex 
roots occur at  8 = n & 68, where 68 = cos-l( (+)$/A). 

For slopes much greater than the critical value, the end points of the arc 
rapidly approach in and f r r ,  while the roots approach 

A* = $‘(~A(cos 81) e*$.. (14) 

Thus, the Stewartson EP layer that exists for A < 1 is modified by orographic 
stretching when A - 1, and is replaced when A % 1 by a thinner layer of scale 

Here the lateral diffusion of vorticity is balanced primarily by orographic 
stretching rather than by Ekman-layer suction. Since the dynamics are otherwise 
the same as in a non-axisymmetric Stewartson E* layer (e.g. Barcilon 1967), 
this layer will be called a modified Stewartson E* or ‘mE2’ layer for A 1. 
The O(Ek) horizontal interior circulation is closed solely by this mE% layer, and 
an analysis similar to that of Pedlosky & Greenspan (1967) shows its azimuthal 
velocity to be to lowest order 

where y = +?‘/(2Alc0~81). 

This result, when rewritten in terms of a and E, is identical to the expression 
found by Pedlosky & Greenspan for the range E.6 < t ana  < I (their analysis 
of the western boundary layer as an Eg layer implicitly assumes that tan a > EB, 
in order to retain the orographic stretching to lowest order within the framework 
of the normal Ei-layer scaling). However, it  is clear that the fundamental dyna- 
mics are essentially unchanged over the larger range of E i  < t ana  < 1. As 
tan a increases from Ei,  the essentially hydrostatic mE4 layer shrinks in thick- 
ness, to become the asymmetric Ef layer indicated by the formalism of Pedlosky 
& Greenspan. The key to this thinning is of course the mEi-layer vertical vor- 
ticity balance (1 1). For tan a < E i ,  the lateral diffusion of vorticity from the side 
wall is balanced primarily by vortex stretching by both Ekman layers, and 
the interior flow is analogous to Stommel’s model with ‘bottom’ friction. In- 
creasing the bottom slope increases the orographic component of this stretching, 
until it dominates the Ekman-layer suction component. Any further increase in 
the orographic component caused by increasing the slope more must then be 
balanced by an enlarged lateral vorticity flux, i.e. a greater velocity shear and a 
thinner boundary layer. It is in this latter range of Ea < t ana  < 1 that the 
interior and mE* flow is analogous to the Munk & Carrier (1950) model for two- 
dimensional flow on a plane with lateral friction. 
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Secondary vertical circulation for E* < tan a -g lt 
While the interior Sverdrup circulation is closed to lowest order by the western 
mEi layer, the O(E*) secondary vertical circulation is not. The vertical flux 
into the upper Ekman layer is to lowest order independent of 8, so the radial 
outflux from this layer is axisymmetric. For tana  < Ei this flux is fed by the 
E) layer through the Ea layer back into the bottom Ekman layer to close the cir- 
culation (Bisshopp 1966). 

A moderate slope of tan a > E* constrains the outflux from the bottom Ekman 
layer to be O(E/tana) < E i ,  so the upper Ekman layer must instead feed the 
interior and western mEi layer directly via an axisymmetric E* layer. 

By continuity, the net radial velocity of this E) layer is u = -+aE*. 
Since the mEa layer exists along the western boundary only, the interior radial 
velocity must match the Ei-layer flux along the eastern boundary. Since the 
interior cross-contour velocity is fixed by the Sverdrup condition (5) ,  the E*- 
layer outflux must flow in the interior parallel to the depth contours, giving for 
the interior pressure, to O(E*), 

Matching the interior and the western half of the Ef layer to the mE4 layer yields 
for the complete boundary-layer azimuthal velocity to O(E*) 

where 7 = (a-r)E-f, 

and ym = (2mn)f, y = ~ ~ t a n a c o s 8 ~ ~ { ~ + ~ a t a n a c o s ~ ) .  

The vertical mass flux extracted from the interior by the upper Ekman layer is 
returned to the interior via the thinner axisymmetric E* layer. The radial out- 
flux from this layer along the eastern side is carried parallel to the geostrophic 
contours into the ageostrophic western mEi layer, where it converges with the 
inner E*-layer outflux along the western boundary. Because of this net conver- 
gence, the mass flux lost by the fluid column as it is carried through the interior 
region from the deep to the shallow end is restored as it returns to the deep end 
via the mEg layer. This convergence, along with the second-order influence of 
the bottom slope on the mE4 boundary-layer thickness, distorts slightly the 
first-order, north-south symmetry. The position of the azimuthal velocity 
maximum is moved through an angle A 8  = ~in -~(5a  tan a/S) from the east-west 
axis toward the shallow end. 

t The analysis for this case is a straightforward extension of the Pedlosky & Greenspan 
analysis to second order in tan a, and will be omitted, since it  may be found in detail 
in Beardsley (1968). Restricting tan a > E% simply allows the Pedlosky C Greenspan 
fennulation to be retained. It is thought, however, that the dynamics of closing the 
vertical circulation, outlined here, also apply over the wider range Ea < tan a Q 1.  
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The possible discrepancy between (17) and the complete series solution is 
O(E*), since the Ekman-layer contribution to vortex stretching in the mEi 
layer has been omitted. The experiments to be described next cover a range of 
E such that 0.147 < E* < 0.198, suggesting that the discrepancy may be appreci- 
able. On the other hand, this theoretical analysis suggests that the western 
layer thickness dependence on E is valid over a wider range of tan OL. % Et. 

3. Experimental apparatus and methods 
3.1. Apparatus 

The fluid container consisted of a lucite cylinder (25.400+0*005 cm i.d.) 
capped at  both ends by lucite plates (see figure 4). The sliced-cylinder geometry 
was formed by inserting a false top and bottom into the cylinder. Five lucite 

- \I1 D II/ 

FIGURE 4. A ,  35 mm camera; B, sloping 'bottom'; C, 0-025 cm clearance; D, 12.7 cm; 
E, 0.0025 cm diameter platinum wire; P, rotating glass disk; G, miniature ball bearing; 
H ,  expansion clamp; 1, circular fluorescent lamp; J ,  sequence timer; K ,  clock motor; 
I,, rotmating table; M ,  worm gear; N ,  gear train. 

bottoms were used with nominal angles of OL. N 6", 8", lo", 12" and 14". The 
mean vertical separation between top and bottom L was 12.75 0.05 cm. The 
geometry was inverted to facilitate construction and operation. 

Two critical design features became apparent during preliminary experimenta- 
tion. The lid driving the fluid must be flat and rotate in a fixed plane, and the 
angular velocities of both the driving lid and the turntable must be quite stable 
to  ensure a constant stress or B .  A glass disk of diameter 24.350 f 0.002 cm was 
used as the top driving plate. Its plane of rotation could be fixed by three support- 
ing miniature ball bearings, since the glass disk was optically flat and its surfaces 
were parallel. The average separation between the side wall and the glassdisk, and 
the side wall and false bottom, was 0.025 cm, about 45 yo of the average Ekman- 
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layer scale thickness LE*. No leakage from the sliced-cylinder section was 
observed. 

To ensure stability the glass plate and turntable were driven by independent 
synchronous motors. The glass disk was connected by a gear train to a clock motor 
powered by an audio oscillator and amplifier system, so the relative angular 
velocity of the glass disk could be varied by adjusting either the oscillator fre- 
quency or the gear reduction ratio. The turntable was driven by a selected 
Graham Variable-speed transmission. The relative angular velocity of the glass 
disk, dependent on the oscillator stability, was quite constant. The angular 
velocity of the turntable was less so, being limited mainly by the stability of 
line frequency. (A typical fractional standard deviation of the turntable’s 
rotation period was N 3 x (20 periods).) 

3.2. Flow visualization 

Velocity measurements were made in the interior and western boundary layer 
over a wide range of Rossby and Ekman numbers, using several flow visualization 
methods. The thymol blue pH indicator technique (Baker 1966) was used in 
the linear flow regime where relative velocities were smaller than 0-1 cm/s. 

Shallow 

0 

Deep Electrode grid 

FIGURE 5 

Two grids of 0.001 in. platinum-irridium wire (see figure 5 )  were stretched hori- 
zontally across the cylinder at x/L = 0.433 and 0.826. The electrode orientation 
0, could be varied by simply twisting the sloping bottom insert. The cylinder 
was filled with a 0.1 N solution of thymol blue titrated to its basic end-point; 
applying a d.c. potential across the grids changed the pH around each wire, 
making the fluid at  the positive electrode more basic and turning it deep blue. A 
sequence of these dye lines was photographed as they were swept off the elec- 
trode (see figure 6, plate 1). The horizontal distance between successive dye 
segments was measured along constant radius arcs and divided by the sequence 
interval to compute the observed velocity. 

Velocities in the non-linear flow regime were greater than 0.1 cm/s, so other 
techniques were used. The horizontal structure was studied with streak photo- 
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graphy using an aluminium flake suspension illuminated from the side by a slit 
beam. A sequential starch-iodine dye method was used to study flow stability. 
Dye pulses formed in the western boundary layer were advected into the interior 
region, where they were photographed periodically. Repeatability of the pattern 
from photograph to photograph indicated steady flow, while temporal variation 
indicated unsteady flow. 

The experimental procedure for all studies was similar. The minimum period 
allowed for spin-up was 2n/E*Q. The driving stress was then applied and, after 
waiting a similar period for transient decay, the flow observations were made. 

4. Experimental results 
The experimental program had two objectives: first, to compare the theoretical 

calculations with measurements of the interior cross-contour flow and of the 
western boundary-layer azimuthal velocity profile; secondly, to explore the 
non-linear response to large E by studying visually the interior horizontal velocity 
structure. 

4.1. Interior $ow 
The interior cross-contour velocity v,, was measured a t  point PI (r/L = 0.566, 
0, = 0, zlL = 0.826) as a function of bottom slope and Rossby number. A second 
measurement was made 5.0 cm below PI to check the predicted z dependence. 
The results (see figure 7 and table 1) indicate that the theoretical Sverdrup balance 
( 5 )  accurately determines the two-dimensional cross-contour velocity component 
over the wide range of E studied. Although precise measurements of the interior 
secondary horizontal flow, parallel to the depth contours, could not be made: the 
sign and order of magnitude of the flow were as predicted in (16). 

4.2. Western boundary-layer $ow 
Velocity measurements were made to determine the dependence of the azimuthal 
velocity profile on E,  a, 0 and z. The dependency on E was stadied near 0, = 7~ 

for a = lo", using 12 table rotation rates. A typical photograph is shown in figure 
6, plate 1, and the measured profile is shown in figure 8. Two variables were 
compared: Armax, the radial distance (em) of the velocity maximum from the 
wall, and Vmax/eQL, the scaled amplitude of the velocity maximum. The theoreti- 
cal values computed from (17), and the observed values, were analyzed by the 
method of least squares (see figure 9 and table 2). While the amplitudes of 
Armax and VmaX/eQL are slightly less than predicted, the observed boundary- 
layer thickness is proportional to E0'33* oo2 ,  while the observed exponent of 
0-21  

Measurements of the maximum velocity made a t  four other azimuthal posi- 
tions in the western boundary layer a t  fixed E and a = 10" correlated well with 
the theoretical envelope given by (17). 

The largest discrepancy between theory and experiment occurred in the a 
and z dependencies. These were examined by measuring the velocity profile near 
0, = 7~ a t  two depths for different a. The observed and theoretical relationships 

0.02 for Vma,/eQL is close to the predicted value of Q. 
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are shown in figure 10 and table 2 .  The theoretical profile is some 8 yo thicker 
at  the lower position, while the velocity maximum is essentially the same at  
both levels. The observed profile was thinner than predicted at  the upper level 
and thicker than predicted at  the lower level. The observed flow was significantly 
slower, showing great vertical shear, and decreased inversely with tana  at  

Rossby number E 

FIGURE 7 

& 

- 0.0026 
- 0.0026 
- 0.0026 
- 0.0026 
- 0.0052 
- 0'0104 
- 0-0208 
- 0.0416 

~ ~~~ 

tan a z/L ?Predicted Vcc ?Observed Vcc 
0.111 0.826 3.89 0.08 
0-144 0.826 3.02 +. 0-06 3.20 2 0.2 
0.178 0.826 2.45 If: 0.05 2.53k0.08 J tanu 
0.178 0.434 2.43 f 0.05 2-54 & 0.12 
0.178 0.826 4.9 k0 .1  
0-178 0.826 9-8 kO.2 9.3 f 0 . 3  
0.178 0.826 19.6 k0 .4  19.3 kO.6 
0.178 0.826 39.0 k0.8 38.0 f 1.0 

3.8 ' O.' 1 Increasing 

t 1 velocity unit = 1 x cm/s. 

TABLE 1. Comparison of interior cross-contour velocity Vc, with theoretical values for 
different values of bottom slope, Rossby number, and vertical position. Experimental 
conditions: !2 = 3.03 rad/s, E II 1.87 x loT6, 0, = 0 

approximately half the predicted rate. The observed boundary layer was both 
slower and thicker at  the bottom; the product Armax V,,,, a transport indicator, 
agreed at  both vertical positions. The observed deviations from theory are not 
presently understood. 

4.3. Horizontal structure in non-linear rLggime 
The non-linear flow regime showed a more marked north-south asymmetry 
in the western boundary layer as the driving stress was increased (see figure 11, 
plate 2). This asymmetry first appeared at a = lo", when was increased past 
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E). When 181 N 3E), the western boundary layer partially closed upon itself to 
form a vortex in the north-west quadrant, and, when N 6E*, this vortex 
shifted downstream to 8 E 130". An even larger stress increased the boundary- 
layer transport and the radial distance from vortex to side wall, but did not affect 
the azimuthal position of the vortex. Although the radial separation between 

_ _ _ _  -0.09 -0.081 o:/ -~ 

-0.07 

-0.06 
-- 

- -0.04 
e 

- 0.03 
-0.02 c I 
-0.01 I-/ 
-0.OOV I I I I I I I I I ' ' 

0 02 0.4 0.6 0.8 1.0 1.2 1-4 1-6 1.8 2.0 2.2 
Radial separation Ar (cm) 

FIGURE 8 

04 
2 3 4 5 6 7  1 

E X  105 

,theory ; FIGURE~..,V-/E.CZ: ---- 
-, experiment. 0, Ar,,, (cm): 
-, theory; -, experiment. 

Sample 
Z/L Theory Experiment size 

(12) 
(12) 

(13) 
(14) 
(131 
(13) 

(a) Arm= (em) 0.826 e3.08*0.01 E033 e3.03i  045 E O . 3 S i  0.02 

V,,,/snL 0.826 e1-46*0A01 Eo-167 e1.88* 0.16 EOG15 0.02 

(b )  A?,, (em) 0.826 e-1~1410.0B tan a-0.33&0.05 e-1.0510.14 tan a - 0 2 3 1 0 . 0 8  

0.434 e-1.08*0.02 tan a-O.32f002 e-0.82*0.20 tan a-0.25f0.11 

v,,,/&L 0.826 e--b37&003 tan a-0.6110.02 e--1~021042 tan a-0G41012 
0.434 e--1.521001 tan a-0.6810.01 e-?..26i0.10 tan a-0.3510.08 

TABLE 2. Theoretical and observed dependence of Arms, and VJ&L on Ekman number, 
bottom slope, and depth. Experimental condition: (a) a = lo", 1-03 rad/s < !2 < 5.43 
rad/s, en = - 0.0078 rad/s; (b) 6' d a d 14", !2 = 3.03 rad/s, E = - 0.0026, 1.86 x 10-5 d 
E < 2.08 x 10-5 

vortex and wall increased with decreasing a at a given value of E ,  the same ter- 
minal angular position of the vortex was observed to k 3" for all a. Measurements 
at  zlL = 0-725 and 0.256 indicated that the vortex axis was aligned with the 
s2 axis to k 2". 

Fluid leaving the western boundary layer entered the interior through a 
transition region, where the extra inertia and vorticity acquired by non-linear 
processes in the western boundary layer were lost. This transition region thickened 
with increasing I E I  until topographic Rossby waves appeared (see figure 11, plate 
2). The streamline pattern was stationary; only propagating waves with phase 
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speed equal and opposite the boundary-layer eastward outflux were present. 
Data indicate the stream pattern was two-dimensional, with wavelength pro- 
portional to J E  and tana-S with 0.5 < 6 < 1 (a half wavelength was defined as 
the distance between two successive points where g . j  = 0 along the depth con- 
tour through the boundary-layer vortex). 

1.1 I I 

(b) - 
- 

1.0 
A+\, - 

I t 0.4 0.4 I I 

0.1 0.15 0.2 0.3 0.1 0.15 0.2 0.3 

tan a tan a 

FIGURE 10. (a )  , Z/L = 043:  - , experiment; - - - theory. 0 , Z1L = 0.83: - - - -, 
, experiment. (b )  0 ,  Z / L  = 0.83: ---, theory; __ , experiment. theory; ___ 

, Z / L  = 0.43: - - - -, theory; -, experiment. 

4.4. Onset of instability 

The steady flow became unstable when a critical value of e was reached. A small 
oscillation of the boundary-layer vortex appeared and a secondary vortex, 
forming periodically in the transition region, moved through the region as it 
decayed (see figure 12, plate 3). This vortex was two-dimensional, to the extent 
that its centre followed similar paths at  zlL = 0.256 and 0.724. 

Reynolds numbers based on the western boundary layer and interior flows 
are equivalent, since their horizontal transports are approximately equal by 
continuity. The western boundary-layer Reynolds number is then 

Two sets of data were used to calculate the dependence of RbBL (the critical value 
of RwBL governing onset of instability) on the parameters E, E ,  a. When E and E 

were varied, and a = 10' (see figure 13), Rb,,, was a slowly increasing linear 
function of E. When E was held approximately constant a t  2 x and e and 
a varied (figure 14), R&BL was proportional to (tana)-l. The critical parameter 
governing onset of instability is then R, = I E ~  E-9, a Reynolds number based on 
the vertical flux into the top Ekman layer and independent of a. The stability 
curve is 

R& = tanaRkBL = 11.3 & 0.2 + (1.26 0-05) x 105E. 
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The observed oscillation period T, i.e. the time between formations of the 
secondary vortex, was also independent of a (see figure 15).t 

From these results, some discussion of the instability mechanism is possible. 
The two-dimensionality of the secondary vortex does not isolate the source of 
the instability in the western boundary layer or transition region. The indepen- 
dence from a of T and RE suggests that the Ekman or Stewartson E* layers may 
initiate the instability rather than a breaking-down of the steady topographic 
wave mechanism. The Ekman-layer instabilities discussed by Lilly (1966) 
and others, however, occur at values of RE 2 0(50), and are of relatively high 
frequency, with typical periods of less than one rotational day. 

30 

h 
18 

12 

105 E 

FIGURE 15 

5. Comparison with previous /3-plane models 
Pedlosky & Greenspan (1967) pointed out the striking similarity of the 

theoretical flow in the sliced cylinder model to certain early linear /3 plane solu- 
tions of the wind-driven ocean circulation problem (e.g. Munk & Carrier 1950, 
for tan a Ei) .  When they were comparedwith actual values of Gulf Stream width 
and transport, the computed eddy viscosity values were so unrealistically large 
that more recent studies have concentrated on the non-linear dynamics that 
affect the western boundary-layer vorticity balance. The plane studies of 

t The initial experiments reported by Pedlosky & Greenspan were carried out in a 
smaller basin (L = 13.4 em, r, = 9.6 em) of different aspect ratio (ro/L = 0.71). The 
photograph (Pedlosky & Greenspan, figure 7) showing the periodic ' meanders' forming 
in the boundary-layer transition region was taken at a = 20°, 6 = - 0.10, E = 3.2 x 
giving a value of RE = 17.8, well above the critical value found here, Rk = 15.4. 
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Fofonoff (1954), Charney (1955), Carrier & Robinson (1962), and others, all 
indicated the purely inertial character of downstream intensification of the 
western boundary layer which is shown here as B is increased. 

More recently, Ilyin & Kamenkovich (1963) and Moore (1963) have discussed 
how an inertial western boundary-layer flux might be closed back into the in- 
terior in the northern half of the basin by imposing damped Rossby waves on 
the eastward zonal outflux from the boundary layer. The more exact numerical 
study by Bryan (1963) illustrated this mechanism. Here, analogous stationary 
topographic waves close the horizontal circulation and help stabilize the western 
boundary layer. With westward phase velocity, but eastward group velocity, 
they can carry out of the western boundary-layer region via the wave mechanism 
a larger flux of vorticity than can be simply convected. 

The sliced-cylinder flow and Bryan’s p plane model may be further com- 
pared, since both obey similar vertical vorticity equations to lowest order when 
Ei < t ana  < 1. Bryan’s unstable case at R, = 100 is apparently similar to the 
instability observed here. A non-linear vorticity analogue to the sliced-cylinder 
model is currently being studied, to see if a two-dimensional model can repro- 
duce the observed instability and its dependence on the external parameters. 

I wish to thankH. Greenspan, R. Hide, M. McIntyre, J. Pedlosky, W. Seigmann 
and members of the M.I.T. Geophysical Fluid Dynamics Laboratory for many 
helpful discussions and suggestions. This research was supported by N.S.F. 
(Grant G P  5053), O.N.R. (Grant NONR-1841(74)), and a Hertz Foundation 
Fellowship. 
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FIGURE 6. Azimuthal velocity in western boundary layer for 10" sloping bottom. Experi- 
mental conditions correspond to figure 7. Interval between dye pulses is 25 8 .  Radial 
distance along electrode between side wall and cross-wire is 3.72 cm. 
BEARDSLEY (Facing p .  272) 
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( b )  
FIGURE 11. Horizontal velocity structure in northern half of basin for 10' sloping bottom. 
Experimental conditons: = 3.03 rad/s, E = 2.03 x Z / L  = 0.62. (a )  Exposure 
time, 4.88 s ;  E = -0.0190; IE~/E* = 4.21. (b)  Exposure time, 3-26 s;  E = -0.0596; 
lej/E: = 13.21. 
REARDRLEY 
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FIGURE 12. Horizontal velocity structurc for unstable mode in northern half of basin 
for 10" sloping bottom. Letters indicate position of secondary vortex at the time 6.4 days 
(b), 12.9 days (c) and 19.3 days ( d )  after formation at  a. Formation period of secondary 
vortex was 23.5 days (1 day = 2n/R s). Experimental conditions: Cl = 3.03 rad/s, E = 
2.04 x lop5, z/L = 0.62, exposure time = 3.25 s. 
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